隐函数x=ln(xy)的导数怎样求
问题描述:
隐函数x=ln(xy)的导数怎样求
答
两边对x求导得:
1=(y+xy')/xy
所以y'=(xy-y)/x
答
1=(xy)'/(xy)
y+xy'=xy
y'=y-y/x
答
x=ln(xy)
x=lnx+lny
1=1/x+(1/y)*y'
(-1/y)y'=1/x-1
y'=-y/x+y