设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2

问题描述:

设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2

lim(f(x+h)-2f(x)+f(x-h))/h^2 = lim ((f(x+h)-f(x))/h-(f(x)-f(x-h))/h)/h
= lim (lim(f(x+h)-f(x))/h-lim(f(x)-f(x-h))/h)/h
= lim (f'(x)-f'(x-h))/h
= f''(x)

先用一次洛必达法则,(注意对h求导,x是定值),分子是f'(x+h)-f'(x-h),分母是2h,改为0.5*
[f'(x+h)-f'(x)]/h+[f'(x-h)-f'(x)]/(-h),两部分都用导数的定义得极限是f''(x)