10个连续的自然数中第三个的数是9,把这10个数填入图中的10个方格内,每格填一个数,要求图中3个2×2的正方形中4个数之和相等,那么这个和最小值是______.

问题描述:

10个连续的自然数中第三个的数是9,把这10个数填入图中的10个方格内,每格填一个数,要求图中3个2×2的正方形中4个数之和相等,那么这个和最小值是______.

答案如图,

答案解析:10个连续的自然数中第三个的数是9,说明这10个数是7、8、9、10、11、12、13、14、15、16,假设中间的两个方格的数是a、b,3个2×2的正方形中4个数之和为k,则有:
7+8+9+…+16+a+b=3k,
115+a+b=3k,
38+

a+b+1
3
=k,
a+b+1必须是3的倍数,当a+b+1=7+10+1=18,或者a+b+1=8+9+1=18时,k最小=38+6=44.
考试点:凑数谜.

知识点:此题考查了凑数谜,设出未知数,列出等式,凑数,即可得解.