若a+b>0且a≠b,比较a^3+b^3与a^2b+ab^2的大小2.解关于x的不等式a(ax-1)+2>4x
问题描述:
若a+b>0且a≠b,比较a^3+b^3与a^2b+ab^2的大小
2.解关于x的不等式a(ax-1)+2>4x
答
1.分解因式,提取公因式,做差比较.a^3+b^3=(a+b)(a^2-ab+b^2) a^2b+ab^2=(a+b)ab做差比较 式子为 (a+b)(a-b)^2a+b>0 (a-b)^2>0 所以 a^3+b^3-a^2b+ab^2>0 所以 a^3+b^3 > a^2b+ab^22.展开 整理得:(a^2-4)x-(a...