求过原点与曲线y=x(x-1)(x-2)相切的直线方程.

问题描述:

求过原点与曲线y=x(x-1)(x-2)相切的直线方程.

设切点坐标为P(a,b),y'=3x2-6x+2则有b=a3−3a2+2ab=3a3−6a2+2a⇒a =0  or  a=32⇒b=0  or  b=−38∴P(0,0)或(32, −38)∴所求切线方程为2x-y=0...
答案解析:先设切点坐标为P(a,b),然后根据导数的几何意义在x=a处的导数即为切线的斜率,以及切点曲线上,建立方程组,解之即可求出切点,再根据点斜时求出切线方程,最后化成一般式即可.
考试点:利用导数研究曲线上某点切线方程.


知识点:本题主要考查了利用导数研究曲线上某点切线方程,以及切线过某点的问题,常常利用导数的几何意义进行求解,属于基础题.