一,解下列关于x的方程1.ab^2x^2-(a^4+b^5)x+a^3b^3=0(ab不等于)2.a^2(x^2-1)=a(x^2-3)+33.(2x^2-3x-2)n^2+(1-x^2)m^2=mn(1+x^2)4.6x^4-13x^3+12x^2-13x+6=05.2x^4+7x^3-x^2-7x+2=06.(12x-1)(6x-1)(4x-1)(3x-1)=5全写出来的再追加50分最好能在明天之前写好第一题为(ab不等于0)
一,解下列关于x的方程
1.ab^2x^2-(a^4+b^5)x+a^3b^3=0(ab不等于)
2.a^2(x^2-1)=a(x^2-3)+3
3.(2x^2-3x-2)n^2+(1-x^2)m^2=mn(1+x^2)
4.6x^4-13x^3+12x^2-13x+6=0
5.2x^4+7x^3-x^2-7x+2=0
6.(12x-1)(6x-1)(4x-1)(3x-1)=5
全写出来的再追加50分
最好能在明天之前写好
第一题为(ab不等于0)
我先保存,有时间再写。
一,解下列关于x的方程
1.ab^2x^2-(a^4+b^5)x+a^3b^3=0(ab不等于)
(ax-b^3)(b^2x-a^3)=0
x1=b^3/a,x2=a^3/b^2
2.a^2(x^2-1)=a(x^2-3)+3
a^2x^2-a^2-ax^2+3a-3=0
(a^2-a)x^2=a^2-3a+3
x^2=(a^2-3a+3)/(a^2-a)
两边开平方得x。
3.(2x^2-3x-2)n^2+(1-x^2)m^2=mn(1+x^2)
2n^2x^2-3n^2x-2n^2+m^2-m^2x^2-mn-mnx^2=0
(2n^2-mn-m^2)x^2-3n^2x-2n^2+m^2-mn=0
(2n+m)(n-m)x^2-3n^2x-(2n-m)(n+m)=0
[(2n+m)x+(n+m)][n-m)x-(2n-m)]=0
x1=-(n+m)/(2n+m),x2=(2n-m)/(n-m)
4.6x^4-13x^3+12x^2-13x+6=0
x^2(6x^2-13x+6)+(6x^2-13x+6)=0
(x^2+1)(6x^2-13x+6)=0
(x^2+1)(3x-2)(2x-3)=0
x1=3/2,x2=2/3
5.2x^4+7x^3-6x^2-7x+2=0
x^2(2x^2+7x-2)-(2x^2+7x-2)=0
(x^2-1)(2x^2+7x-2)=0
x1=1,x2=-1,x3=(-7-√65)/4,x4=(-7+√65)/4
6.(12x-1)(6x-1)(4x-1)(3x-1)=5
(x-1/12)(x-1/6)(x-1/4)(x-1/3)=5/(12*6*4*3)
(x^2-5/12*x-1/36)(x^2-5/12*x-1/24)=5/864
(x^2-5/12*x)^2-5/72*(x^2-5/12x)+1/864=5/864
(x^2-5/12*x-1/9)(x^2-5/12*+1/24)=0
x1=(5+√89)/24,x2=(5-√89)/24,x3=1/4,x4=1/6
说明:
(1)怀疑第5题题目应该是:2x^4+7x^3-4x^2-7x+2=0,原题目想了很久还分解不出来
(2)2、3题应该分情况讨论a、m、n的值,比较麻烦
(3)gbguo,你的最后那道题好像解得有点问题啊
1、
ab^2x^2 - (a^4+b^5)x + a^3b^3 = 0
(ax - b^3)(b^2x - a^3) = 0
解得:
x = b^3 / a,或 x = a^3 / b^2
2、
a^2(x^2-1)=a(x^2-3)+3
(a^2 - a)x^2 = a^2 - 3a + 3
(1) 若 a = 0 或 a = 1,则无解;
(2) 若 a > 1 或 a a(a-1) > 0,a^2 - 3a + 3 = (a - 1.5)^2 + 3/4 > 0
所以:
x^2 = (a^2 - 3a + 3) / [a(a-1)] > 0
x = ±√{(a^2 - 3a + 3) / [a(a-1)] }
(3)若 0 a(a-1) 0
所以:
x^2 = (a^2 - 3a + 3) / [a(a-1)] 故x无实数解(如果能用复数的话,x = ±i√{-(a^2 - 3a + 3) / [a(a-1)] })
3、
(2x^2-3x-2)n^2+(1-x^2)m^2=mn(1+x^2)
( 2n^2 - m^2 - mn )x^2 - 3n^2 * x + (m^2 - 2n^2 - mn) = 0
(2n + m)(n - m)x^2 - 3n^2 * x + (m - 2n)(m + n) = 0
( (2n+m)x + (m+n) )((n-m)x + (m-2n) ) = 0
(1)若n = m = 0,则:x为任意值
(2)若n、m不同时为0,则:
① 2n = -m 时,x = (2n-m) / (n-m)
② n = m 时,x = (-n-m) / (2n+m)
③ 2n ≠ -m,且 n ≠ m时,x1 = (2n-m) / (n-m) ,x2 = (-n-m) / (2n+m)
4、
6x^4-13x^3+12x^2-13x+6=0
( 6x^4 - 13x^3 + 6x^2 ) + (6x^2 - 13x + 6) = 0
x^2(6x^2 - 13x + 6) + (6x^2 - 13x + 6) = 0
(x^2 + 1) (6x^2 - 13x + 6) = 0
因为:x^2 + 1 > 0,所以:
6x^2 - 13x + 6 = 0
(2x - 3) (3x - 2) = 0
x = 2/3 或 x = 3/2
5、怀疑题目是:
2x^4+7x^3-4x^2-7x+2=0
( 2x^4 + 7x^3 - 2x^2) - ( 2x^2 + 7x - 2 ) = 0
x^2 ( 2x^2 + 7x - 2 ) - ( 2x^2 + 7x - 2 )= 0
( x^2 - 1 )( 2x^2 + 7x - 2 ) = 0
(x + 1)(x - 1)( 2x^2 + 7x - 2 ) = 0
x1 = -1,x2 = 1,x3 = (-7+√65)/4,x4 = (-7+√65)/4
6、
(12x-1)(6x-1)(4x-1)(3x-1)=5
(12x-1)(12x-2)(12x-3)(12x-4)=2*3*4*5
显然,左边是4个公差为1的等差数列的积,可令:
12x - 1 = 5
12x - 2 = 4
12x - 3 = 3
12x - 4 = 2
得:x = 1/2
也可以令:
12x - 1 = -2
12x - 2 = -3
12x - 3 = -4
12x - 4 = -5
则得:x = -1/12
为了证明x只有这2个解,我们令 y = 12x - 3
则:(y-1)y(y+1)(y+2) = 120 有2个根y=3、y=-4
展开,得:
y^4 + 2y^3 - y^2 - 2y - 120 = 0
一定可分解为:
(y + 4)(y - 3)f(y) = 0
其中 f(y)是关于 y 的二次函数.
f(y) = ( y^4 + 2y^3 - y^2 - 2y - 120 )/ (y + 4)(y - 3)
= ( y^4 + 2y^3 - y^2 - 2y - 120 )/ (y^2 + y - 12)
= y^2 + (y^3 + 11y^2 - 2y - 120 )/ (y^2 + y - 12)
= y^2 + y + (10y^2 - 10y - 120) / (y^2 + y - 12)
= y^2 + y + 10
= (y + 1/2)^2 + 9.75 > 0
故 y 只有2根 4和-3
所以x也只有2根 1/2 和 -1/12
1、4 2、5 3、0 4、8 5、17 6、32