当n趋向于无穷大时,求(1+2²+3²+…+n²)/n³ 极限
问题描述:
当n趋向于无穷大时,求(1+2²+3²+…+n²)/n³ 极限
答
1+2²+3²+…+n²=n(n+1)(2n+1)/6
所以原式=1/3
答
lim[n→+∞](1+2²+3²+…+n²)/n³
=lim[n→+∞]n(n+1)(2n+1)/(6n^3)
=lim[n→+∞]1(1+1/n)(2+1/n)/6
=1/3