有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成______个形状不同的三角形.

问题描述:

有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成______个形状不同的三角形.

3个234 245 345

20

任取三条线段为一组得:①1、2、3,②1、2、4,③1、2、5,④1、3、4,⑤1、3、5,⑥1、4、5,⑦2、3、4,⑧2、3、5,⑨2、4、5,⑩3、4、5,共十组,
①∵1+2=3,∴不能组成三角形;
②∵1+2=3<4,∴不能组成三角形;
③∵1+2=3<5,∴不能组成三角形;
④∵1+3=4,∴不能组成三角形;
⑤∵1+3=4<5,∴不能组成三角形;
⑥∵1+4=5,∴不能组成三角形;
⑦能够组成三角形;
⑧∵2+3=5,∴不能组成三角形;
⑨能够组成三角形;
⑩能够组成三角形.
故共可以组成3个形状不同的三角形.
答案解析:先以任意三条线段为一组分组,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边判断能否组成三角形.
考试点:三角形三边关系.


知识点:本题主要利用三角形的三边关系,三角形的三边关系是判定能否组成三角形的依据.

234,245,345
3个