x^2-(x-1)^2-[(x-1)^2-(x-2)^2]=2^2表示平方

问题描述:

x^2-(x-1)^2-[(x-1)^2-(x-2)^2]=2
^2表示平方

x^2-(x-1)^2-[(x-1)^2-(x-2)^2]
=x^2-x^2+2x-1-[(x-1+x-2)(x-1-x+2)]
=2x-1-(2x-3)
=2

左边=(x+x-1)(x-x+1)-(x-1+x-2)(x-1-x+2)
=(2x-1)-(2x-3)
=2x-1-2x+3
=-1+3
=2
=右边

公式:a^2 - b^2 = (a + b) * (a - b)
所以:
x^2-(x-1)^2 = (x + x - 1) * (x - x + 1) = 2x - 1
(x-1)^2-(x-2)^2 = (x - 1 + x - 2) * (x - 1 - x + 2) = 2x - 3
因此:
x^2-(x-1)^2-[(x-1)^2-(x-2)^2] = (2x - 1) - (2x - 3) = 2
完毕

原式=(X+X-1)(X-X+1)-(X-1+X-2)(X-1-X+2)(平方差公式〕
= 2X-1-(2X-3)
= 2X-1-2X+3
=2