求lim为2的n次方+3的n次方分之2的n+1次方+3的n+1次方=3,求极限
问题描述:
求lim为2的n次方+3的n次方分之2的n+1次方+3的n+1次方=3,求极限
答
极限就是3,你答案都写出来了啊
答
没看懂
答
上下除以3^n
=lim[(2/3)^n+1]/[2*(2/3)^n+3]
(2/3)^n趋于0
所以原式=(0+1)/(0+3)=1/3