已知向量OA=a 向量OB=b 向量OC=c 向量OD=d 且四边形ABCD为平行四边形 则有A.a+b+c+d=o B.a-b+c-d=0 C.a+b-c-d=0 D.a-b-c+d=0答案是B ,但我觉得A好像也是对的啊,为什么不对啊

问题描述:

已知向量OA=a 向量OB=b 向量OC=c 向量OD=d 且四边形ABCD为平行四边形 则有
A.a+b+c+d=o B.a-b+c-d=0 C.a+b-c-d=0 D.a-b-c+d=0
答案是B ,但我觉得A好像也是对的啊,为什么不对啊

B答案肯定是对的.我来给你分析A选项吧.
A是不一定对的.因为O点的位置不明,所以a+b+c+d会随着O点的位置的变化而变化.
可能你无形中把O点当成是平行四边形的中心了.如果是中心,固然正确,但如果在AB中点呢?BC中点呢?其他位置呢?答案就有无数多种了.