-(根号3+i)的15次方怎么解?
问题描述:
-(根号3+i)的15次方怎么解?
答
方法一:用复数的三角形式
[-(根号3+i)]^15
={2*[cos(7π/6)+i*sin(7π/6)]}^15
=2^15*[cos(15*7π/6)+i*sin(15*7π/6)]
=2^15*[cos(35π/2)+i*sin(35π/2)]
=-2^15*i
方法二:利用[-(根号3/2+i/2)]^3=-i
所以[-(根号3+i)]^15
={2*[-(根号3/2+i/2)]}^15
=2^15*[-(根号3/2+i/2)]^3*5
=2^15*(-i)^5
=-2^15*i
答
(-(根号3+i))^15
=(2*(cos(4π/3)+isin(4π/3)))^15
=(2^15)*(cos((4π/3)*15)+isin((4π/3)*15))
=(2^15)*(cos20π+isin20π)
=2^15