2²+4²+6²+······+2004²

问题描述:

2²+4²+6²+······+2004²

∑(2n)2=∑4n2=∑4×[n×(n+1) ×(2n+1)/6]=4×[1002×1003×2005/6]=1343358020 其中n=1,2,3,,,,,1002

1^2+2^2+3^2+..+n^2 = (1/6)n(n+1)(2n+1)
2²+4²+6²+······+2004²
=2^2(1^2+2^2+..+1002^2)
=4 (1/6)1002(1003)(2005)
=1343358020