数列1/n怎么求和数列为{1/n},求此数列前n项和..意思是1+1/2+1/3+1/4+...+1/n
数列1/n怎么求和
数列为{1/n},求此数列前n项和..
意思是1+1/2+1/3+1/4+...+1/n
这个没有一般求法的
1+1/2+1/3+1/4+...+1/n
没有极值
我不是数学系的
俺是土木的
没有公式
很多人一开始看到这个问题,常常会很直觉的回答:[收敛级数]。因为当级数继续发
展下去,所加上的数便会趋近於无限小,趋近於零,对整个级数的影响也相对变小,故得
知1+1/2+1/3+1/4+…..为收敛级数,这样的解释看似合理,但事实真是如此吗?大家都应
该知道,所谓发散级数,指的就是无论加上多小的数,虽然一开始没有太大的变化,但加
到某个范围便会持续变大,而上列的题目便是属於这种例子。
一开始我们先设原式为:
A=1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/13+……
然后再设另一式为:
B=1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16+1/16+1/16+1/16+…….. 所以A >B ……….. a
=>B= 1+1/2+1/4×2+1/8×4+1/16×8+1/32×16+1/64×32+1/128×64+…………
=1+1/2+1/2+1/2+1/2+1/2+1/2+1/2+………..
由上是得知B为发散级数 …….. b
由a,b两个条件 ∴ A为发散级数
我觉得一般这个题都是在极限出现的
求极限
极限是2
当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n)
0.57721566490153286060651209叫做欧拉常数
to GXQ:
假设;s(n)=1+1/2+1/3+1/4+..1/n
当 n很大时 sqrt(n+1)
= sqrt(n*(1+1/n))
= sqrt(n)*sqrt(1+1/2n)
≈ sqrt(n)*(1+ 1/(2n))
= sqrt(n)+ 1/(2*sqrt(n))
设 s(n)=sqrt(n),
因为:1/(n+1)所以:
s(n+1)=s(n)+1/(n+1)即求得s(n)的上限
自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
人们倾向于认为它没有一个简洁的求和公式.
但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.
当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 to GXQ:假设;s(n)=1+1/2+1/3+1/4+..1/n 当 n...