1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2) 的求和公式怎么推导?

问题描述:

1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2) 的求和公式怎么推导?

1/[n*(n 1)*(n 2)]=1/2*[1/(n*(n 1))-1/(n 1)*(n 2)]1/[n*(1 n)]=1/n-1/(n 1)1/[(1 n)*(2 n)]=1/(n 1)-1/(2 n)再求和其中很多项都抵消了最后的和为:S=0.25-[1/(n*n)]/[1 (3/n) (2/(n*n))]就是化简后的结果了...