f(x)=lg[1+2^x+3^x+……+(n-1)^x+n^xa]/n,其中a是实数,n是任意给定的正自然数且n≥2,如果f(x)当x∈(-∞,1]时有意义,求a的取值范围.
问题描述:
f(x)=lg[1+2^x+3^x+……+(n-1)^x+n^xa]/n,其中a是实数,n是任意给定的正自然数且n≥2,如果f(x)当x∈(-∞,1]时有意义,求a的取值范围.
答
若f(x)有意义,1+2^x+3^x+……+(n-1)^x+n^xa>0
等价于-a(1+2+3+……(n-1)/n=(n-1)/2
所以a∈(-(n-1)/2,∞)