综合算式1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)还有(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100),今晚要!
综合算式1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)
还有(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100),今晚要!
1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)=1/2+(1/3-1/2)+(1/4-1/3)+(1/5-1/4)+(1/6-1/5)+(1/7-1/6)=1/2+1/3-1/2+1/4-1/3+1/5-1/4+1/6-1/5+1/7-1/6=1/7(-1)+(+2)+(-3)+(+4)+……+(-99)+(+10...
=50
1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)
=1-1/2-(1/2-1/3)-(1/3-1/4)-(1/4-1/5)-(1/5-1/6)-(1/6-1/7)
=1/2-1/3+1/3-1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7
=1/2+1/7
=9/14;
(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100),
=(2-1)+(4-3)+....+(100-99)
=1+1+...+1
=1*50
=50
50
第一题
1/2 + (-1/6) +(-1/12) + (-1/20) +(-1/30) +(-1/42)
=1/2 + (1/3 -1/2) + (1/4-1/3) + (1/5-1/4) +(1/6-1/5) +(1/7-1/6)
=1/7
第二题
(-1)+2+(-3)+4+(-5)+6 +……+ (-99)+100
=(-1+2)+(-3+4)+(-5+6) +……+ (-97+98) +(-99+100)
=50
50才对,就是2和-1是1 ,4和-3是1,一共50对,所以是50
1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)=5/26;
(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100)=50
0.14286,50
1/2+(-1/2*3)+(-1/3*4)+(-1/4*5)+......+(-1/6*7)=注意前两个想减的话就是1/3,用1/3减1/12就是1/4,以此类推,最后的结果就是1/7;
-1+2-3+4-5+6+。。。。。。+100=1*50=50
第一题,通过观察可以发现,该式可拆成1/2+(1/3-1/2)+(1/4-1/3)+(1/5-1/4)+(1/6-1/5)+(1/7-1/6)=1/7
第二题,两种解法:1、每两个相加得1,共有50对,即得50
2、原式=(-1-3-5-······-99)+(2+4+6+····+100)
=[(2+100)x50]/2+[(-1-99)x50]/2
=2x25
=50
1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)
=[1/2-1/42]+[-1/6-1/30]+(-1/12)+(-1/20)
=10/21+(-1/5)+(-1/12)+(-1/20)
=10/21+(-1/12)+[(-1/5)+(-1/20)]
=10/21+[(-1/12)+(-1/4)]
=10/21+(-1/3)
=3/21
=1/7
(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100)
=[(-1)+(+2])+[(-3)+(+4)]+……+[(-99)+(+100)] (一共有五十项)
=1+1+1+……+1 (一共有五十项)
=50
n为的项数
第一题:1/(n+1)由第一项开始每加一项就写下来,看它们的规律
第二题:n/2 因为单数项与双数项相加为1所以把项数除以二就得出答案
1/2+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)
=3/6+(-1/6)+(-1/12)+(-1/20)+(-1/30)+(-1/42)
=1/3-1/12-1/20-1/30-1/42
=4/12-1/12-1/20-1/30-1/42
=1/5-1/30-1/42
=1/6-1/42
=1/7
(-1)+(+2)+(-3)+(+4)+……+(-99)+(+100)
=[(-1)+(+2)]+[(-3)+(+4)]+……+[(-99)+(+100)]
=1X100÷2
=50
如果您认可我的答案,请点击下面的“选为满意回答”按钮,谢谢!