解答数学代数题若c是正整数,a,b,c,d,e,f是整数,且满足a+b=c,b+c=d,d+c=e,e+f=a,则a+b+c+d+e+f最小值为?

问题描述:

解答数学代数题
若c是正整数,a,b,c,d,e,f是整数,且满足a+b=c,b+c=d,d+c=e,e+f=a,则a+b+c+d+e+f最小值为?

全部转换为c和ba = c-bb = bc = cd = b+ce = d+c = b+c+c = b+2cf = a-e = c-b-(b+2c) = -c-2ba+b+c+d+e+f=(c-b)+ b + c +(b+c)+(b+2c)+(-c-2b)= c-b+b+c+b+c+b+2c-c-2b=4cc为正整数所以最小值为14c=4所以a+...