1,三角形ABC的三边长a,b,c满足b+c=8,bc=a的平方减12a+52,则三角形ABC的周长为多少?2,抛物线y=2乘x的平方-4x-5向左平移3个单位,再向上平移2个单位,得抛物线C,则C关于Y轴对称的抛物线是?3,钝角三角形ABC中,角C为钝角,AC=7,BC=4,D为AB中点,E为AC边上一点,且角AED=90度+角C的一半,求CE的长4,某工交公司停车场有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到几点时,停车场内第一次出现无辆车?5,已知n是正整数,且2n+1与3n+1都是完全平方数.是否存在n,使得5n+3是质数?若存在,求出所有n的值;若不存在,说明理由.
问题描述:
1,三角形ABC的三边长a,b,c满足b+c=8,bc=a的平方减12a+52,则三角形ABC的周长为多少?
2,抛物线y=2乘x的平方-4x-5向左平移3个单位,再向上平移2个单位,得抛物线C,则C关于Y轴对称的抛物线是?
3,钝角三角形ABC中,角C为钝角,AC=7,BC=4,D为AB中点,E为AC边上一点,且角AED=90度+角C的一半,求CE的长
4,某工交公司停车场有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到几点时,停车场内第一次出现无辆车?
5,已知n是正整数,且2n+1与3n+1都是完全平方数.是否存在n,使得5n+3是质数?若存在,求出所有n的值;若不存在,说明理由.
答
1.a=6 b=4 c=4
答
b+c≥2√bc
bc≤[(b+c)/2]^2=4^2=16
bc=a^2-12a+52≤16
a^2-12a+36≤0
(a-6)^2≤0
a-6=0
a=6
C=a+b+c=6+8=14