解方程:13/(x-4)-10/(x-3)=4/(x-5)-1/(x-1) 不能漏解方程:13/(x-4)-10/(x-3)=4/(x-5)-1/(x-1) 不要网上抄,我不会才问的
问题描述:
解方程:13/(x-4)-10/(x-3)=4/(x-5)-1/(x-1) 不能漏
解方程:13/(x-4)-10/(x-3)=4/(x-5)-1/(x-1)
不要网上抄,我不会才问的
答
左右两边通分得
(3x+1)/[(x-3)(x-4)]=(3x+1)/[(x-5)(x-1)]
当3x+1=0时 x=-1/3
当3x+1≠0时
有(x-3)(x-4)=(x-5)(x-1) (x≠5,x≠4,x≠3,x≠1)
解得x=7
综上 x=7或x=-1/3
答
答案是x1=-1/3, x2=7 要有过程! 13/(x-4)-10/(x-3)=4/(x-5)-1/(x-1) 左右两边分别通分得(3x 1)/(x-4)(x-3)=(3x 1)
答
合并得(13(x-3)-10(x-4)/(x*x-7x+12)=(4(x-1)-(x-5))/(x*x-6x+5)
去里面的括号并和并得(3x+1)/(x*x-7x+12)=(3x+1)/(x*x-6x+5)
交叉相乘并约分得x*x-7x+12=x*x-6x+5
x=7