三角形一边长为10cm,该边上中线长5cm,周长为24cm,则这个三角形的面积为(  )A. 12cm2B. 6cm2C. 8cm2D. 24cm2

问题描述:

三角形一边长为10cm,该边上中线长5cm,周长为24cm,则这个三角形的面积为(  )
A. 12cm2
B. 6cm2
C. 8cm2
D. 24cm2

∵三角形一边长为10cm,该边上中线长5cm,
∴此三角形是直角三角形,
设另外两条直角边长为a和b,
则a2+b2=102=100,①
∵想周长为24cm,
∴a+b=14,②
由①②可得:ab=48,
∴这个三角形的面积=

1
2
ab=24cm2
故选D.
答案解析:由已知条件可得三角形是直角三角形,利用勾股定理和三角形的周长可知可求出两条直角边,再根据三角形的面积公式计算即可.
考试点:A:勾股定理 B:等腰三角形的性质
知识点:本题主要考查对三角形的面积,勾股定理,直角三角形斜边上的中线,完全平方公式等知识点的理解和掌握,能根据性质求出ab的值是解此题的关键.