已知m向量=(sinx,2cosx),n向量=(2sinx,根号3sinx),函数f(x)=mn(1).求f(x)的最小正周期及减区间;(2).若f(α/2+π/4)=-3/5.α属于(2π/3,7π/6).求sinα的值

问题描述:

已知m向量=(sinx,2cosx),n向量=(2sinx,根号3sinx),函数f(x)=mn
(1).求f(x)的最小正周期及减区间;
(2).若f(α/2+π/4)=-3/5.α属于(2π/3,7π/6).求sinα的值

f(x)=m*n=2(sinx)^2+2√3sinxcosx=1-cos(2x)+√3sin(2x)=1+2sin(2x-π/6) 。
(1)最小正周期为 T=2π/2=π ,
由 2kπ+π/2因此减区间为 [kπ+π/3,kπ+5π/6] ,k∈Z 。
(2)f(α/2+π/4)=1+2sin(α+π/3) = -3/5 ,因此 sin(α+π/3) = -4/5 ,
根据 α 范围可得 cos(α+π/3) = -√[1-(-4/5)^2] = -3/5 ,
所以 sinα=sin[(α+π/3)-π/3]
=sin(α+π/3)cos(π/3)-cos(α+π/3)sin(π/3)
=(-4/5)*(1/2)-(-3/5)*(√3/2)
=(3√3-4)/10 。

f(x)=向量m.向量n
f(x)=2sin^2x+2√3sinxcosx.
=1-cos2x+√3sin2x.
∴f(x)=2sin(2x-π/6)+1.
(1)函数f(x)的最小正周期T:T=2π/2,∴T=π.
令2kπ+π/2≤2x-π/6≤2kπ+3π/2,经过简单运算,得:
kπ+π/3≤x≤kπ+5π/6 k∈Z.---所求函数f(x)的单调递减区间.
(2)由f(x)=2sin(2x-π/6)+1,得:
f(α/2+π/4)=2sin{[2*(α/2)+π/4]-π/6}+1=-3/5 ,α∈(2π/3,7π/6).
2sin(α+π/4-π/6)+1=-3/5.
sin(α+π/12)=-4/5.
sinα=sin(α+π/12-π/12).
=sin(α+π/12)cosπ/12-cos(α+π/12)sinπ/12.
=sin(α+π/12)cos(π/3-π/4)-cos(α+π/12)sin(π/3-π/4).
=(-4/5)*√2/4(√3+1)-(-3/5)(√2/4)(√3-1).
∴sinα=(-√2/20)*(√3+7),(sinα≈ -0.6174).