如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.

问题描述:

如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,
(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)
(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.

(1)∠C=2∠D 即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°-2∠GAB,∠BAC+∠ABC=90°,即180°-2∠GAB+2∠DBA=90°,整理得出∠GAB-∠DBA=45°,∴∠D=12∠C=45°;(...
答案解析:(1)根据角平分线的性质、外角的性质、三角形内角和定理整理即可得出答案;
(2)根据(1)中结论即可推理得出答案.
考试点:三角形内角和定理;三角形的外角性质.
知识点:本题主要考查了角平分线的性质、外角的性质、三角形内角和定理,比较综合,难度较大.