已知(x-y)^2=625/36,x+y=7/6,分别求x^2-y^2,x^2+y^2,xy的值.
问题描述:
已知(x-y)^2=625/36,x+y=7/6,分别求x^2-y^2,x^2+y^2,xy的值.
答
因为(x-y)^2=625/36,所以x-y=25/6,或者x-y=-25/6,
所以x^2-y^2=(x+y)(x-y)=175/36 或者-175/36
后面的自己再算算
答
(x-y)^2=625/36
x-y=±25/6
(x+y)²=49/36
(x+y)²-(x-y)²=4xy=49/36-625/36=-576/36=-16
xy=-4
x^2-y^2=(x+y)(x-y)=±175/36
x^2+y^2=(x+y)²-2xy=49/36-2×(-144/36)=337/36