1/√ 2+1+1/√ 3+√ 2+1/√ 4+√ 3+····+1/√ 2009+√ 2008的值
问题描述:
1/√ 2+1+1/√ 3+√ 2+1/√ 4+√ 3+····+1/√ 2009+√ 2008的值
答
1/(√2+1)=(√2-1)/(√2+1)(√2-1)=√2-1
1/(√3+√2)=√3-√2
原式=√2-1+√3-√2+√4-√3+……+√2009-√2008
=√2009-1
=7√41-1
答
分母有理化
1/(√2+1)=(√2-1)/(√2+1)(√2-1)=√2-1
同理
1/(√3+√2)=√3-√2
后面以此类推
原式=√2-1+√3-√2+√4-√3+……+√2009-√2008
=√2009-1
=7√41-1