将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,设第n次全行的数都为1的是第x行;第61行中1的个数是y,则x、y的值分别是( )A. 2n+1,32B. 2n-1,32C. 2n-1,31D. 2n+1,31
问题描述:
将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,设第n次全行的数都为1的是第x行;第61行中1的个数是y,则x、y的值分别是( )
A. 2n+1,32
B. 2n-1,32
C. 2n-1,31
D. 2n+1,31
答
知识点:本题考查了归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质,(2)从已知某些相同性质中推出一个明确表达的一般性命题.
由已知中的数据第1行 1 1第2行 1 0 1第3行 &...
答案解析:本题考查的知识点是归纳推理,我们可以根据图中三角形是将杨辉三角中的奇数换成1,偶数换成0,结合杨辉三角我们易得到第1行,第3行,第7行,…全都是1,则归纳推断可得:第n次全行的数都为1的是第2n-1行;由此结论我们可得第63行共有64个1,逆推即可得到第61行中1的个数.
考试点:数列的应用.
知识点:本题考查了归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质,(2)从已知某些相同性质中推出一个明确表达的一般性命题.