求证(sinA)^2-(sinB)^2=sin(A+B)sin(A-B)求证(sinA)^2-(sinB)^2=sin(A+B)sin(A-B)
问题描述:
求证(sinA)^2-(sinB)^2=sin(A+B)sin(A-B)
求证(sinA)^2-(sinB)^2=sin(A+B)sin(A-B)
答
(sinA)^2-(sinB)^2=(sinA+sinB)*(sinA-sinB)
由和差化积公式sinA+sinB=2*sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2*sin[(A-B)/2]*cos[(A+B)/2]
得:(sinA)^2-(sinB)^2=2*sin[(A+B)/2]*cos[(A-B)/2]*2*sin[(A-B)/2]*cos[(A+B)/2]=2*sin[(A+B)/2]*cos[(A+B)/2] * 2*sin[(A-B)/2]*cos[(A-B)/2]
再由倍角公式sin2A=2sinA*cosA,得:
(sinA)^2-(sinB)^2=sin(A+B)sin(A-B)
答
sin(A+B)sin(A-B)=(sinAcosB+cosAsinB)(sinAcosB-cosAsinB)=(sinA)^2 (cosB)^2 -(cosA)^2 (sinB)^2=(sinA)^2 (1-sinB^2)-(cosA)^2 (1-cosB^2)=(sinA)^2 -(sinA)^2 (sinB)^2-(sinB)^2+(sinA)^2 (sinB)^2=(sinA)^2-(si...