如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有(  )A. 1个B. 2个C. 3个D. 4个

问题描述:

如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有(  )
A. 1个
B. 2个
C. 3个
D. 4个

∵△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,∴∠BAC=∠DAE,BC=DE,故②正确;∴∠BAC-∠DAC=∠DAE-∠DAC,即∠1=∠2,故①正确;∵△ABC≌△ADE,∴AB=AD,AC=AE,∴ABAC=ADAE,∵∠1=∠2,∴△ABD∽△ACE,故③...
答案解析:由△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,根据全等三角形的性质,即可求得BC=DE,∠BAC=∠DAE,继而可得∠1=∠2,则可判定①②正确;由△ABC≌△ADE,可得AB=AD,AC=AE,则可得AB:AC=AD:AE,根据有两边对应成比例且夹角相等三角形相似,即可判定③正确;易证得△AEF∽△OCF与△AOF∽△CEF,继而可得∠OAE+∠OCE=180°,即可判定A、O、C、E四点在同一个圆上.
考试点:相似三角形的判定;全等三角形的性质;圆周角定理.


知识点:此题考查了相似三角形的判定与性质、全等三角形的性质以及四点共圆的知识.此题难度较大,注意数形结合思想的应用,注意找到相似三角形是解此题的关键.