求一道高一数学三角函数题的解已知函数f(x)=cosx*根号(1+sinx/1-sinx)+sinx*根号(1+cosx/1-cosx)(1)当x∈(-π/2,0)时,化简f(x)的解析式并求f(-π/4)的值(2)当x∈(π/2,π)时,求函数f(x)的值域(是不是看起题来有点费劲?)

问题描述:

求一道高一数学三角函数题的解
已知函数f(x)=cosx*根号(1+sinx/1-sinx)+sinx*根号(1+cosx/1-cosx)
(1)当x∈(-π/2,0)时,化简f(x)的解析式并求f(-π/4)的值
(2)当x∈(π/2,π)时,求函数f(x)的值域
(是不是看起题来有点费劲?)

f(x)=cosx*√[(1+sinx)/(1-sinx)]+sinx*√[(1+cosx)/(1-cosx)]
=cosx*√[(1+sinx)(1+sinx)/(1-sinx)(1+sinx)]+sinx*√[(1+cosx)(1+cosx)/(1-cosx)(1+cosx)]
=cosx * (1+sinx)/|cosx| +sinx*(1+cosx)/|sinx|
1).x∈(-π/2,0),在第四象限,则cosx为正,sinx为负
则f(x)=cosx * (1+sinx)/cosx - sinx*(1+cosx)/sinx=1+sin(x)-1-cos(x)=sin(x)-cos(x)
当x=-π/4时,f(-π/4)=-√2
2)x∈(π/2,π),在第二象限,则cosx为负,sinx也为正
则f(x)= -1-sinx+1+cosx = cosx -sinx=√2sin(x-π/4)
则f(x)的值域是[-√2,√2]

f(x)=cosx*√[(1+sinx)/(1-sinx)]+sinx*√[(1+cosx)/(1-cosx)]
=cosx*√[(1+sinx)(1+sinx)/(1-sinx)(1+sinx)]+sinx*√[(1+cosx)(1+cosx)/(1-cosx)(1+cosx)]
=cosx * (1+sinx)/|cosx| +sinx*(1+cosx)/|sinx|
1)x∈(-π/2,0),在第三象限,则cosx为负,sinx也为负
则f(x)= - 1-sinx-1-cosx = 2-sinx-cosx
f(-π/4)=2 -√2/2-√2/2=2-√2
2)x∈(π/2,π),在第二象限,则cosx为负,sinx也为正
则f(x)= -1-sinx+1+cosx = cosx -sinx = -√2 sin(x-π/4)
x∈(π/2,π),则x-π/4 ∈(π/4,3π/4)
sin(x-π/4)∈(√2/2,1)
则-√2 sin(x-π/4)∈(-√2, -1〕
即当x∈(π/2,π)时,求函数f(x)的值域为(-√2, -1〕

因为1+sinx/1-sinx=(1+sinx)^2/(1-sinx)(1+sinx)=(1+sinx)^2/(1-sinx^2)=(1+sinx)^2/cosx^2
所以cosx*根号(1+sinx/1-sinx)
=cosx*(1+sinx)/绝对值cosx=1+sinx (在第四象限cosx为正)
同理sinx*根号(1+cosx/1-cosx)=-1-cosx (在第四象限,sinx为负)
所以f(x)=sinx-cosx=根2sin(x-π/4)
从而f(-π/4)=根2sin(-π/4-π/4)=-根2
2)x∈(π/2,π)
则x-π/4∈(π/4,3π/4)
则sin(x-π/4)∈(-根2/2,1]
则根2sin(x-π/4)∈(-1,根2]
这个就是答案了
纯粹手打,