已知α、β均为锐角且cosα=4/5,tan(α-β)=-1/3 (1)求cos(α-β)的值 (2)求sinβ的值
问题描述:
已知α、β均为锐角且cosα=4/5,tan(α-β)=-1/3 (1)求cos(α-β)的值 (2)求sinβ的值
答
(1)cos²(α-β)=cos²(α-β)/[cos²(α-β)+sin²(α-β)]=1/[1+tan²(α-β)]=1/(1+1/9)=9/10,
∵α、β均为锐角,∴-π/20,
故cos(α-β)=3√10/10。
(2)∵cos(α-β)=3√10/10,tan(α-β)=-1/3,
∴sin(α-β)=cos(α-β)tan(α-β)= -√10/10,
又α为锐角且cosα=4/5,得sinα=3/5,
故sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=13√10/50。
答
∵α、β均为锐角,cosα=4/5∴sinα=3/5sin(α-β)=sinαcosβ-cosαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α-β)=(tanα-tanβ)/(1+tanαtanβ)=(3/4-tanβ)/(1+3tanβ/4)=-1/3即 3/4-tanβ=-1/3-tanβ/43/4+1...