(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2)数列{cn}满足c(n+1)-cn=(1/2)^n(n∈N*),其中c1=1.令f(n)=bn-cn,当-16≤a≤-14时,求f(n)的最小值.(第一问我会了,用来给各位过度……第二问算到n^2+(a/2)*n+(a/2)+2*((1/2)^n)-3算不下去了……)

问题描述:

(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
(1)若a1,a3,a4成等比数列,求数列{an}的通项公式
(2)数列{cn}满足c(n+1)-cn=(1/2)^n(n∈N*),其中c1=1.令f(n)=bn-cn,当-16≤a≤-14时,求f(n)的最小值.
(第一问我会了,用来给各位过度……第二问算到n^2+(a/2)*n+(a/2)+2*((1/2)^n)-3算不下去了……)