求不定积分:∫(sinx)^2dx

问题描述:

求不定积分:∫(sinx)^2dx

∫sin²xdx=1/2∫(1-cos2x)dx=1/2(x-1/2sin2x)+c=x/2-1/4sin2x+c

因为我是手机登录,只能如下叙述:1,分解为-积分sinxdcosx。2,分部积分:-sinxcosx+积分(cosx)^2dx。3,将后面的(cosx)^2换成1-(Sinx)^2。4,移项,得2倍积分(sinx)^2dx=x-sinxdcosx。得到答案…

∫sin²xdx=1/2 ∫(1-cos2x) dx=1/2 (x-∫cos2xdx)=1/2(x-1/2∫cos2xd2x)=1/2(x-1/2sin2x)=x/2-(sin2x)/4验算:x/2-(sin2x)/4 '=1/2-2/4 cos2x=1/2-1/2(cos²x-sin²x)=1/2(1-cos²x+sin²x)=1/...