已知实数x,y满足x2+2xy+3y2-8y+6=0,求x,y的取值范围

问题描述:

已知实数x,y满足x2+2xy+3y2-8y+6=0,求x,y的取值范围

原式等于x²+2xy+y²+2y²-8y+6=0
(x+y)²+( y-3)(2y-2)=0
(x+y)²大于等于0
( y-3)(2y-2)小于等于0
解出y,根据y写x

x2+2xy+3y2-8y+6=0
而,x^2+2xy+3y^2-8y+6=(x+y)^2+2y^2-8y+6
=(x+y)^2+2(y-2)^2-2=0
(x+y)^2+2(y-2)^2=2
所以,|y-2|