设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求∂2z∂x∂y.
问题描述:
设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求
.
∂2z ∂x∂y
答
知识点:偏导数的求解过程中,为了书写的简单,经常会用
表示函数f对第一个变量求偏导,f″12表示函数f对第一个变量求偏导再对第二变量求偏导.
∵z=f(exsiny,x2+y2),
∴
=f′1•[exsiny]x+f′2•[x2+y2]x=exsinyf′1+2xf′2,∂z ∂x
进一步得:
=
∂2z ∂x∂y
(∂ ∂y
)=[exsinyf'1]y+[2xf′2]y∂z ∂x
=ex[cosyf′1+siny•
]+2x∂f′1
∂y
∂f′2
∂y
=excosyf′1+exsiny•[f″11•excosy+f″12•2y]+2x[f″21•excosy+f″22•2y]
=e2xsinycosyf″11+2ex(ysiny+xcosy)f″12+4xyf″22+excosyf′1,
答案解析:此题考查没有具体表达式的多元复合函数求导法则的使用.
考试点:二阶偏导的计算.
知识点:偏导数的求解过程中,为了书写的简单,经常会用
f |
′
1
|