设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求∂2z∂x∂y.

问题描述:

设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求

2z
∂x∂y


∵z=f(exsiny,x2+y2),

∂z
∂x
=f1•[exsiny]x+f2•[x2+y2]x=exsinyf′1+2xf′2
进一步得:
2z
∂x∂y
∂y
(
∂z
∂x
)
=[exsinyf'1]y+[2xf′2]y
=ex[cosyf1+siny•
∂f1
∂y
]+2x
∂f2
∂y

=excosyf1+exsiny•[f11excosy+f12•2y]+2x[f21excosy+f22•2y]
=e2xsinycosyf11+2ex(ysiny+xcosy)f12+4xyf22+excosyf1
答案解析:此题考查没有具体表达式的多元复合函数求导法则的使用.
考试点:二阶偏导的计算.

知识点:偏导数的求解过程中,为了书写的简单,经常会用
f
1
表示函数f对第一个变量求偏导,f″12表示函数f对第一个变量求偏导再对第二变量求偏导.