五年级下册数学最最最难题(10个)

问题描述:

五年级下册数学最最最难题(10个)

123

在三角形ABC中,AB=AC,AD平分角ABC交AC于D,求角A的度数!四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 点的直线分别交 AD,BC 于 M,N 点. 求证: ∠1 = ∠2 A M 1 O 2 B C N D (四)解答题: 解答题: 1,如图,已知 AC=AB,∠1=∠2;求证:BD=CE A E D 1 2 B C 22.(6 分)如图,△ABC 中,∠B= 45 ,∠ACB= 70 ,AD 是△ABC 的角平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证 明;若不成立,请说明理由; A E H C B D 9. 如图,四边形 ABCD 的对角线 AC 与 BD 相交于 O 点, ∠1 = ∠2 , ∠3 = ∠4 . 求证: (1) △ ABC ≌△ ADC ; (2) BO = DO . A B 1 2 3 4 O D (第 23 题) C 四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 点的直线分别交 AD,BC 于 M,N 点. 求证: ∠1 = ∠2 A M 1 O 2 B C N D (四)解答题: 解答题: 1,如图,已知 AC=AB,∠1=∠2;求证:BD=CE A E D 1 2 B C 22.(6 分)如图,△ABC 中,∠B= 45 ,∠ACB= 70 ,AD 是△ABC 的角平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证 明;若不成立,请说明理由; A E H C B D 9. 如图,四边形 ABCD 的对角线 AC 与 BD 相交于 O 点, ∠1 = ∠2 , ∠3 = ∠4 . 求证: (1) △ ABC ≌△ ADC ; (2) BO = DO . A B 1 2 3 4 O D (第 23 题) C 四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 点的直线分别交 AD,BC 于 M,N 点. 求证: ∠1 = ∠2 A M 1 O 2 B C N D (四)解答题: 解答题: 1,如图,已知 AC=AB,∠1=∠2;求证:BD=CE A E D 1 2 B C 22.(6 分)如图,△ABC 中,∠B= 45 ,∠ACB= 70 ,AD 是△ABC 的角平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证 明;若不成立,请说明理由; A E H C B D 9. 如图,四边形 ABCD 的对角线 AC 与 BD 相交于 O 点, ∠1 = ∠2 , ∠3 =四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 点的直线分别交 AD,BC 于 M,N 点. 求证: ∠1 = ∠2 A M 1 O 2 B C N D (四)解答题: 解答题: 1,如图,已知 AC=AB,∠1=∠2;求证:BD=CE A E D 1 2 B C 22.(6 分)如图,△ABC 中,∠B= 45 ,∠ACB= 70 ,AD 是△ABC 的角平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角四边形 ABCD 中,AC 平分∠BAD,CE⊥AB 于 E,且∠B+∠D=180°,求 证:AE=AD+BE A 1 2 D E B C 20.如图 17 所示,在∠AOB 的两边上截取 AO=BO,OC=OD,连接 AD,BC 交于点 P, 连接 OP,则下列结论正确的是 ( ) ①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP A.①②③④ B.①②③ C.②③④ D.①③④ O C P A D B 1 13.如图△ABC 中,F 是 BC 上的一点,且 CF= BF, 2 那么△ABF 与△ACF 的面积比是_____ 29.如图 22,已知 AD 是△ABC 的中线, DE⊥AB 于 E, DF⊥AC 于 F, 且 BE=CF, 求 证:(1)AD 是∠BAC 的平分线;(2)AB=AC. A 1 2 E B D 图 22 F C 12.在△ABC 中, AB = AC, AD 和 CE 是高,它们所在的直线相交于 H. ⑴若∠BAC = 45°(如图①),求证:AH = 2BD; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的 结论. A E B H D 图① A C B 图② C 例 3.如图所示,D 在 AB 上,E 在 AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 如图,AB =CD,AD =BC,O 为 BD 上任意一点,过 O 点的直线分别交 AD,BC 于 M,N 点. 求证: ∠1 = ∠2 A M 1 O 2 B C N D (四)解答题: 解答题: 1,如图,已知 AC=AB,∠1=∠2;求证:BD=CE A E D 1 2 B C 22.(6 分)如图,△ABC 中,∠B= 45 ,∠ACB= 70 ,AD 是△ABC 的角平分线,F 是 AD 上一 点,EF⊥AD,交 AC 于 E,交 BC 的延长线于 G.求∠G 的度数. A 0 0 F E B D C G 24. (8 分)已知如图,△ABC 中,AB=AC,D 是 AB 的中点,DE⊥AB 交 AC 于 E, A D E B C 22,在△ABC 中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边 AB 的中点 P 处, 将三角板绕 P 点旋转,三角板的两直角边分别交 AC,CB 于 D,E 两点,如图(1)(2)所示. , A D C P B A P D C B C A P B E E 问 PD 与 PE 有何大小关系?在旋转过程中, 还会存在与图⑴, ⑵不同的情形吗?若存在, (3) (1) (2) 请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明. 2,如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= . C D E A B 5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证 明;若不成立,请说明理由; A E H C B D 9. 如图,四边形 ABCD 的对角线 AC 与 BD 相交于 O 点, ∠1 = ∠2 , ∠3 = ∠4 . 求证: (1) △ ABC ≌△ ADC ; , = ∠2 , ∠3 = ∠4 . 求证: (1) △ ABC ≌△ ADC ; (2) BO = DO . A B 1 2 3 4 O D (第 23 题) C 分线与∠ACB 的外角平分线交于 D,DE‖BC 交 AB 于 E, 交 AC 于 F.求证:BE=EF+CF 3,已知:如图,AB‖CD,AB=CD,BE‖DF; 求证:BE=DF; D A E O F C B (选做题) 4,在△ABC 中∠BAC 是锐角,AB=AC,AD 和 BE 是高,它们交于点 H,且 AE=BE; (1)求证:AH=2BD; (2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证 明;若不成立,请说明理由; A E H C B D 9. 如图,四边形 ABCD 的对角线 AC 与 BD 相交于 O 点, ∠1 = ∠2 , ∠3 = ∠4 . 求证: (1) △ ABC ≌△ ADC ; (2) BO = DO . A B 1 2 3 4 O D (第 23 题) C ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于 D绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝绝对对对对对对对对对对对超难

1.小华期末考试成绩:语文70分,音乐90分,体育82分,美术80分,数学成绩比五科的平均成绩高6分,数学成绩和五科的平均成绩各是多少分?2.建材批发产部用140块同样大的长方体堆成长3m.宽1.6m.高2m的长方体.堆成的这个长方体...