设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2=f(x0)的2阶导数

问题描述:

设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2=f(x0)的2阶导数

用二次洛必达法则:
lim(h→0)f(x0+h)+f(x0-h)-2f(x0) / h^2
=lim(h→0)f '(x0+h)-f '(x0-h) / 2h
=lim(h→0)f ''(x0+h)+f ''(x0-h) / 2
=f ''(x0)+f ''(x0) / 2(这里使用“二阶导数连续”的已知条件)
=f ''(x0)