arctan1/3+arctan1/2+arctan1=几,
问题描述:
arctan1/3+arctan1/2+arctan1=几,
答
原题可化为 :已知:tanx=1/2,tany=1/3,x,y∈(-π/2,π/2)(反正切函数定义).求x+y+π/4的值.由题意,tan(x+y)=(tanx+tany)/(1-tanxtany) =(1/2+1/3)/(1-1/2×1/3) =1 因为tanx,tany均大于0,又x,y∈(-π/2...