解方程:x−2x−1−x−4x−3=x−6x−5−x−8x−7.

问题描述:

解方程:

x−2
x−1
x−4
x−3
x−6
x−5
x−8
x−7

两边通分的:

(x−2)(x−3)−(x−1)(x−4)
(x−1)(x−3)
=
(x−6)(x−7)−(x−5)(x−8)
(x−5)(x−7)

2
x2−4x+3
=
2
x2−12x+35

∴x2-4x+3=x2-12x+35,
移项合并得:8x=32,
解得:x=4,
经检验x=4是分式方程的解.