解方程:x−2x−1−x−4x−3=x−6x−5−x−8x−7.
问题描述:
解方程:
−x−2 x−1
=x−4 x−3
−x−6 x−5
. x−8 x−7
答
两边通分的:
=(x−2)(x−3)−(x−1)(x−4) (x−1)(x−3)
,(x−6)(x−7)−(x−5)(x−8) (x−5)(x−7)
即
=2
x2−4x+3
,2
x2−12x+35
∴x2-4x+3=x2-12x+35,
移项合并得:8x=32,
解得:x=4,
经检验x=4是分式方程的解.