如图所示,已知D为三角形ABC内角A角平分线上一点,连接DB,DC,且角ABD=角ACD,试判断AD与BC的位置关系
问题描述:
如图所示,已知D为三角形ABC内角A角平分线上一点,连接DB,DC,且角ABD=角ACD,试判断AD与BC的位置关系
答
AD⊥BC
理由:
∵AD平分∠BAC
∴∠BAD=∠CAD
∵∠ABD=∠ACD,AD=AD
∴⊿ABD≌⊿ACD﹙AAS﹚
∴AB=AC
∵AD平分∠BAC
∴AD⊥BC﹙等腰三角形三线合一性质)