sin^2x+cos^2+sin2x=1那么sinx+cosx等于多少
问题描述:
sin^2x+cos^2+sin2x=1那么sinx+cosx等于多少
答
sin^2x+cos^2x+sin2x=1
sin2x=0
sinxcosx = 0
(sinx+cosx)^2 = 1+2sinxcosx =1
sinx+cosx = 1 or -1
答
sin^2x+cos^2x+sin2x=1
sin^2x+cos^2x+2sinxcosx=1
(sinx+cosx)^2=1
所以sinx+cosx=±1
答
因为sin2x=2sinxcosx
sin^2x+cos^2x+2sinxcosx=1
(sinx+cosx)^2=1
所以sinx+cosx=±1
答
sin^2x+cos^2+sin2x=1
所以
(sinx+cosx)^2=1
从而
sinx+cosx=1或-1