设函数f(X)=cos(2x+π/3)+sin方x.求函数f(x)的最大值和最小正周期

问题描述:

设函数f(X)=cos(2x+π/3)+sin方x.求函数f(x)的最大值和最小正周期

f(x)=cos(2x+π/3)+sin²X
=1/2*cos2x-√3/2*sin2x+(1/2)(1-cos2x)
=1/2-√3/2*sin2x,
(1)f(x)的最大值=(1+√3)/2.
最小正周期=π.
(2)由f(c/2)=-1/4得1/2-√3/2sinC=-1/4,
∴sinC=√3/2,C为锐角,
∴cosC=1/2,
cosB=1/3,
∴sinB=2√2/3,
∴sinA=sin(B+C)=sinBcosC+cosBsinC
=(2√2+√3)/6.

∵f(x)=cos2xcos(π/3)-sin2xsin(π/3)+(sinx)^2
=(1/2)cos2x-(√3/2)sin2x+(sinx)^2
=(1/2)[1-2(sinx)^2]-(√3/2)sin2x+(sinx)^2
=1/2-(sinx)^2-(√3/2)sin2x+(sinx)^2
=1/2-(√3/2)sin2x.
∴当sin2x=-1时,f(x)有最大值为1/2+√3/2. f(x)的最小正周期=2π/2=π.