设集合A={2,4,6,8,10},CUA={1,3,5,7,9},CUB={1,4,6,8,9},则集合A∩B=______.
问题描述:
设集合A={2,4,6,8,10},CUA={1,3,5,7,9},CUB={1,4,6,8,9},则集合A∩B=______.
答
∵集合A={2,4,6,8,10},CUA={1,3,5,7,9},
∴U={1,2,3,4,5,6,7,8,9,10},
∵CUB={1,4,6,8,9},
∴B={2,3,5,7,10},
A∩B={2}.
故答案为:{2}.
答案解析:由集合A={2,4,6,8,10},CUA={1,3,5,7,9},知U={1,2,3,4,5,6,7,8,9,10},由CUB={1,4,6,8,9},知B={2,3,5,7,10},由此能求出A∩B={2}.
考试点:交、并、补集的混合运算.
知识点:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.