如果函数f(x)=a^x(a^x-3a^2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,求实数a的取值范围?

问题描述:

如果函数f(x)=a^x(a^x-3a^2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,求实数a的取值范围?
答案是根号3/3到1之间

f(x)=a^x(a^x-3a^2-1)=(a^x)^2-(3a^2+1)a^x
令t=a^x,则f(x)=t^2-(3a^2+1)t是关于t的二次函数,对称轴t=(3a^2+1)/2
若a>1,t=a^x是单调增的(t>=1),要使f(x)在[0,+无穷大)上单调增,则t^2-(3a^2+1)t在[1,+无穷大)上单调增
∴对称轴t=(3a^2+1)/2∴a^2若0∴对称轴t=(3a^2+1)/2>=1
∴a^2>=1/3
∴√3/3综上,a的范围为[√3/3,1)