已知函数f(X)=2sin(x-π/3)cos(x-π/3)+2根号3cos^2(x-π/3)-根号3,若函数y=f(2x)-a在区间[0,π/4]上恰有两个零点x1,x2,求tan(x1+x2)的值
问题描述:
已知函数f(X)=2sin(x-π/3)cos(x-π/3)+2根号3cos^2(x-π/3)-根号3,若函数y=f(2x)-a在区间
[0,π/4]上恰有两个零点x1,x2,求tan(x1+x2)的值
答
答案为2+根号3
用2倍角公式和辅助角公式可以将f(x)化简为:
f(x)=2sin(2x-π/3)
所以
y=f(2x)-a=2sin(4x-π/3)-a
y的周期为π/2,
当4x-π/3=π/2 时,y取最大值,此时x=5π/24,在区间[0,π/4]上中。x=5π/24是y的一条对称轴。
所以x1和x2关于5π/24对称。
所以tan(x1+x2)=tan(2*5π/24)=tan(5π/12)=tan(π/4+π/6)=(1+根号3 /3)/(1-根号3 /3)
=2+根号3
答
f(x)=2sin(x-π/3)cos(x-π/3)+2√3cos^2(x-π/3)-√3 =sin(2x-2π/3)+√3cos(2x-2π/3) =2[sin(2x-2π/3)cosπ/3+cos(2x-2π/3sinπ/3] =2sin(2x-2π/3+π/3)+1-√3 =2sin(2x-π/3) 故 f(2x)-a=2sin...