已知二次函数f(x)=ax²+bx+c和一次函数g(x)= -bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R
问题描述:
已知二次函数f(x)=ax²+bx+c和一次函数g(x)= -bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R
求证
(1)求证:两函数的图像交于不同的两点A,B
(2)求线段AB在x轴上的射影A1B1的长的取值范围
答
(1)由y=ax²+bx+c和y-bx,可消去y,得ax²+2bx+c=0.∵a>b>c,a+b+c=0,∴a>0,c<0,∴方程ax²+2bx+c=0的判别式△=(2b)² - 4ac = 4(-a-c)² - 4ac = 4(a+c/2)² + 3c²>0∴方程ax...