求微分方程的通解:y'=((1-y^2)^(1/2))/((1-x^2)^(1/2))

问题描述:

求微分方程的通解:y'=((1-y^2)^(1/2))/((1-x^2)^(1/2))

dy/dx=((1-y^2)^(1/2))/((1-x^2)^(1/2))
dy/(1-y^2)^(1/2)=dx/(1-x^2)^(1/2)
arcsiny=arcsinx+C