直线y=kx+1与圆x2+y2+kx-y=0的两个交点恰好关于y轴对称,则k等于( ) A.0 B.1 C.2 D.3
问题描述:
直线y=kx+1与圆x2+y2+kx-y=0的两个交点恰好关于y轴对称,则k等于( )
A. 0
B. 1
C. 2
D. 3
答
联立直线与圆的方程得:
,
y=kx+1
x2+ y2+kx -y=0
消去y得:(k2+1)x2+2kx=0,
设方程的两根分别为x1,x2,
由题意得:x1+x2=-
=0,2k
k2+1
解得:k=0.
故选A.