设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点与抛物线C2:x^2=4√2y焦点重合,F1,F2分别是椭圆的左右焦点,离心率e=√3/3,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,是否存在直线l,使得OM·ON
问题描述:
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点与抛物线C2:x^2=4√2y焦点重合,F1,F2分别是椭圆的左右焦点,离心率e=√3/3,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,是否存在直线l,使得OM·ON=-1,若存在,求出直线l的方程;若不存在,说明理由
答
因为抛物线的焦点F(0,√2),所以b^2=2,又因为e=√3/3,所以a^2=3,所以椭圆C1:x^2/3+y^2/2=1,右焦点F2(1,0).设L:y=k(x-1),M(x1,y1),N(x2,y2),因为OM·ON=-1,所以x1*x2+y1*y2=-1.由y=k(x-1)和x^2/3+y^2/2=1联立得:...