求dy/dx+y/x=e^(xy)

问题描述:

求dy/dx+y/x=e^(xy)

令e^(xy)=u,y=lnu/x
Dy/dx=[(x/u)*(du/dx)-lnu]/x²,
∴(1/ux)*(du/dx)-lnu/x²+lnu/x²=u
即du/u²=xdx
两边积分
X²/2+e^(-xy)=c
就是方程的解