与直线y=4x-1平行的曲线y=x3+x的切线方程是( ) A.4x-y=0 B.4x-y+2=0或4x-y-2=0 C.4x-y-2=0 D.4x-y=0或4x-y-4=0
问题描述:
与直线y=4x-1平行的曲线y=x3+x的切线方程是( )
A. 4x-y=0
B. 4x-y+2=0或4x-y-2=0
C. 4x-y-2=0
D. 4x-y=0或4x-y-4=0
答
∵y=x3+x
∴y′=3x2+1.
令y′=4⇒x2=1⇒x=±1.
把x=1代入y=x3+x得:y=2.所以切线方程为:y-2=4(x-1)⇒4x-y-2=0;
把x=-1代入y=x3+x得:y=-2,所以切线方程为:y+2=4(x+1)⇒4x-y+2=0.
故选B.